Ćwiczenie: B1 Tytuł ćwiczenia:

Wyznaczanie przerwy energetycznej w półprzewodniku metodą optyczną

I. Cel ćwiczenia i informacje wprowadzające

Celem ćwiczenia jest wyznaczenie przerwy energetycznej w półprzewodnikach metodą optyczną, czyli w procesie absorpcji światła dla próbek monokryształów GaAs i GaP. Pomiar natężenia promieniowania wiązki odbitej od próbki oraz przechodzącej przez próbkę pozwala zbadać rozkład stanów energetycznych w pobliżu energii Fermiego i wyznaczyć przerwę energetyczną materiału.

II. Zakres ćwiczenia (zadania do wykonania)

- 1. Wyznaczenie poprawki skalowania monochromatora.
- 2. Wyznaczenie współczynników odbicia i transmisji oraz obliczenie współczynników absorpcji.
- 3. Wyznaczenie wartości przerwy energetycznej na podstawie uzyskanych zależności współczynnika absorpcji światła od energii fotonów.

III. Zagadnienia do kolokwium

- 1. Model pasmowy ciała stałego, półprzewodniki, zależności dyspersyjne E(k)
- 2. Stałe optyczne: współczynnik załamania, współczynnik absorpcji, stała dielektryczna
- 3. Oddziaływanie fali elektromagnetycznej z półprzewodnikiem
- 4. Absorpcja światła w półprzewodnikach z przerwą prostą i przerwą skośną
- 5. Budowa i zasada działania fotokomórki i fotodiody.
- 6. Zasada pomiaru współczynników odbicia i transmisji oraz wyznaczenia przerwy energetycznej.

IV. Opis urządzeń i przyrządów używanych w eksperymencie

Zdjęcie zestawionej w eksperymencie aparatury oraz schemat układu przedstawione są na Rys. 1 i Rys. 2. W skład aparatury pomiarowej wchodzą: monochromator SPM1, układ optyczny do formowania wiązki światła, układ detekcyjny z przesuwem próbek, lampa sodowa z zasilaczem (dławikiem) i stabilizatorem napięcia 220 V, oświetlacz z zasilaczem stabilizowanym oraz woltomierz cyfrowy.

Rys. 1 Fotografia układu pomiarowego do wyznaczania przerwy energetycznej metodą optyczną z zaznaczonymi elementami składowymi: 1- monochromator SPM1, 2- układ detekcyjny, 3- woltomierz cyfrowy, 4- lampa sodowa, 5- oświetlacz, 6- zasilacz lampy sodowej (dławik), 7- stabilizator napięcia 220 V do zasilacza lampy sodowej (dławika), 8- zasilacz stabilizowany oświetlacza, 9- ława optyczna. Schemat układu przedstawiony jest na Rys. 2.

Schemat blokowy aparatury pomiarowej.

Rys. 2 Schemat blokowy układu pomiarowego do wyznaczania wartości przerwy energetycznej półprzewodników metodą optyczną.

Monochromator SPM1.

Monochromator służy do wybrania wąskiego pasma falowego z wiązki świata o widmie ciągłym. Spełnia rolę przestrajalnego filtra pasmowego. Jako elementy dyspersyjne stosowane są pryzmaty lub siatki dyfrakcyjne. Zakres falowy monochromatora zależy od własności optycznych materiału, z którego wykonano element dyspersyjny.

Rys. 3

a) Schemat monochromatora SPM1 z zaznaczonymi najważniejszymi elementami: 1- pryzmat (element wymienny), 2, 3 - szczeliny monochromatora (wejściowa i wyjściowa), 4, 5 - śruby mikrometryczne do regulacji szerokości szczelin, 6 - pokrętło monochromatora ze skalą, 7 - zamek pokrywy monochromatora, 8 - ława optyczna do montażu zewnętrznych elementów optyki, 9 - obudowa monochromatora.
b) Fotografia monochromatora SPM1.

Rys. 4 Fotografia pokrętła monochromatora ze skalą, odczyt pomiaru M = 1242 działki.

Rys. 5 Fotografia układu optycznego monochromatora SPM1 (po zdjęciu pokrywy). Na fotografii zaznaczono: 1- zwierciadło kolimacyjne, 2- zwierciadło płaskie, 3- pryzmat, 4- układ obrotu pryzmatu połączonego ze zwierciadłem płaskim, 5- zwierciadło wklęsłe, 6- szczelina wejściowa monochromatora, 7- szczelina wyjściowa monochromatora.

Tabela 1. Dane	prvzmatów	użvwanych	z monochromator	em SPM1.
	p1 y 2111010 W	azywanych	2 1110110011101110101	CIII 01 14111.

Materiał pryzmatu	Kąt łamiący pryzmatu	Zakres falowy pracy
Szkło kwarcowe	56°	0,21 1,6 μm
Fluorek litu	82°	0,3 5,3 μm
Chlorek sodu	67°	0,4 15 μm

Szerokość szczelin monochromatora S1= S2= 0,2 mm należy ustawić śrubami mikrometrycznymi 4 i 5 pokazanymi na Rys. 3 .

Rys. 6. Przebieg promieni świetlnych w monochromatorze SPM1. Oznaczenia elementów układu: 1- zwierciadło kolimacyjne, 2- zwierciadło płaskie, 3- pryzmat, 4- oś obrotu układu zwierciadła płaskiego i pryzmatu, 5- zwierciadło wklęsłe, S1- szczelina wejściowa, S2- szczelina wyjściowa.

Układ detekcyjny z próbką

Układ detekcyjny znajduje się w pojemniku w kolorze zielonym. Do mocowania pokrywy służą trzy mosiężne śruby wkręcane od góry. Na zewnętrznej ścianie obudowy zamocowany jest układ przesuwu próbki oraz gniazdo BNC i przełącznik wyboru detektorów.

Rys. 7 Fotografia obudowy układu detekcyjnego z widokiem na przełącznik detektorów i gniazdo BNC. T/Rprzełącznik detektorów, PP- dźwignia przesuwu próbki, BNC- gniazdo kabla podłączonego do woltomierza cyfrowego, T- pozycja przełącznika do pomiaru napięcia odpowiadającego natężeniu wiązki światła padającego (odniesienia) lub światła przechodzącego - po przesunięciu próbki za pomocą dźwigni przesuwu próbki, Rpozycja przełącznika do pomiaru napięcia odpowiadającego natężeniu wiązki światła odbitego.

Rys. 8 Fotografia wnętrza układu detekcyjnego po zdjęciu pokrywy: P- próbka GaP, D1- detektor wiązki światła padającego (odniesienia) i wiązki światła przechodzącego, D2- detektor wiązki światła odbitego, Z- zwierciadło wklęsłe, T/R- przełącznik detektorów, PP- dźwignia przesuwu próbki, P1- próbka GaAs następna do pomiaru.

Układ zawiera detektory OPT 101 (D1 i D2) w postaci fotodiody zintegrowanej ze wzmacniaczem operacyjnym. Napięcie wyjściowe wzmacniacza jest wprost proporcjonalne do natężenia światła, które oświetla fotodiodę. Pole aktywne fotodiody ma kształt kwadratu o wymiarach 3 x 3 mm².

Oświetlacz

Oświetlacz wytwarza zbieżną wiązkę światła i oświetla szczelinę wejściową monochromatora. Źródłem światła jest żarówka zasilana z zasilacza stabilizowanego 5351 M.

Rys. 9 Fotografia oświetlacza.

Lampa sodowa.

Lampa sodowa jest lampą wyładowczą, w której wyładowanie elektryczne zachodzi w parach sodu. W zakresie widzialnym wytwarza ona dwie blisko leżące linie światła żółtego o średniej długości λ = 589,3 nm.

Rys. 10 Fotografia lampy sodowej.

Woltomierz cyfrowy V560

Woltomierz cyfrowy V560 służy do pomiaru napięcia wyjściowego detektorów D1 i D2. Połączony jest za pomocą kabla z gniazdem detektorów na obudowie układu detekcyjnego. Pomiary napięcia należy prowadzić z włączonym czerwonym przyciskiem funkcyjnym "V", zmieniając zakresy napięć woltomierza od 100 mV do 10 V, w zależności od wielkości mierzonego napięcia.

Rys. 11 Fotografia woltomierza cyfrowego V560 służącego do pomiaru napięć na detektorach: 1- gniazda wejściowe woltomierza, 2- przełączniki trybu pracy woltomierza, 3- przełączniki zakresów (czułości) woltomierza do pomiaru napięć i prądów.

Stabilizator napięcia 220 V

Stabilizator napięcia 220 V służy do zasilania lampy sodowej. Na płycie czołowej stabilizatora znajdują się cztery gniazda. Jedno z nich służy do podłączenia wtyczki zasilacza lampy sodowej (dławika). Dodatkowo znajdują się dwa przełączniki i lampka kontrolna sygnalizująca pracę stabilizatora.

Rys. 12 Fotografia a) płyty czołowej stabilizatora napięcia 220 V do zasilacza lampy sodowej (dławika): 1- włącznik, 2- przełącznik wyboru urządzenia, 3- lampka kontrolna, 4- gniazdo podłączenia lampy sodowej oraz b) zasilacza lampy sodowej (dławika): 5- włącznik.

Zasilacz stabilizowany 5351 M

Urządzenie służy do zasilania oświetlacza (Rys. 9), który jest źródłem wiązki światła w eksperymencie.

Rys. 13. Fotografia zasilacza stabilizowanego 5351 M. Oznaczenia: 1- gniazda wejściowe do oświetlacza, 2włącznik sieciowy, 3- przełączniki napięcia i prądu, 4- pokrętło regulacji napięcia, 5- pokrętło regulacji prądu, 6przyciski zakresów regulacji (mnożniki), 7- miernik napięcia i prądu, 8- dioda zielona, wskaźnik stabilizacji napięcia, 9- dioda czerwona, wskaźnik stabilizacji prądu.

V. Wykonanie ćwiczenia

(sposób postępowania, schematy blokowe, uwagi dotyczące obsługi aparatury i BHP)

Układ pomiarowy spektrometru służy do pomiaru natężenia światła wiązek przechodzących i odbitych od powierzchni płytek półprzewodnikowych, skąd możliwe jest wyznaczenie współczynnika absorpcji, a następnie określenie wartości przerwy energetycznej. Światło z oświetlacza po przejściu przez monochromator wchodzi do układu detekcyjnego, w którym następuje pomiar natężenia światła padającego i odbitego. Pomiar natężeń światła prowadzony jest poprzez rejestrację napięć na odpowiednich detektorach.

Zestawienie i włączenie aparatury.

Przed uruchomieniem układu pomiarowego należy sprawdzić wszystkie jego elementy.

1. Włączanie lampy sodowej.

Aby włączyć lampę sodową należy włożyć wtyczkę zasilacza lampy (dławika) w gniazdo nr 4 oznaczone **Vorschaltgerät für Wasserstoflampe** w górnej płycie obudowy stabilizatora. Przełącznik **Umschalter** (nr. 2 na Rys. 12) ustawić w pozycji **Wasserstofflampe**, a następnie główny włącznik **Hauptschalter** (nr. 1 na Rys. 12) przestawić z pozycji **Aus** na **Ein**. Wówczas powinna zapalić się lampka kontrolna sygnalizująca działanie stabilizatora. W kolejnym kroku należy przełączyć włącznik na zasilaczu lampy sodowej (dławiku) z pozycji prawej na lewą.

Uwaga: przed przystąpieniem do pomiarów z lampą sodową należy po włączeniu wygrzewać ją przez 10 min.

2. Włączanie oświetlacza.

Aby włączyć oświetlacz należy podłączyć kabel zasilający do wejścia zasilacza stabilizowanego 5351 M, Rys. 13. Następnie należy włączyć zasilacz czerwonym przyciskiem i ustawić stabilizację napięciową (powinna zapalić się zielona dioda) dla odpowiednich wartości napięcia (6 V) i prądu (około 5 A), regulując pokrętłami "REGULACJA NAPIĘCIA" I "REGULACJA PRĄDU". Regulację należy przeprowadzic **stopniowo** aby nie przekroczyć zalecanych wartoścfi prądu i napięcia. Wybór odczytu napięcia lub prądu na mierniku następuje po naciśnięciu przycisku "NAPIĘCIE" lub "PRĄD". Po odczekaniu około 10 min. można przystąpić do pomiarów.

3. Włączanie woltomierza cyfrowego.

Aby uruchomić woltomierz cyfrowy należy wtyczkę zasilacza włączyć do gniazda prądu, po czym należy przełączyć włącznik na tylnej ścianie obudowy.

Wykonanie pomiarów.

Przed właściwym pomiarem współczynników transmisji i odbicia należy wyznaczyć poprawkę ustawienia monochromatora. Fabryczna tabela cechowania, tabela 2, sporządzona została tak, że żółtej linii sodu o długości fali λ = 589,3 nm odpowiada ustawienie pokrętła monochromatora *M* = 1305,9 (element nr 6 na Rys. 3, Rys. 4). Należy to sprawdzić wykorzystując światło lampy sodowej (4 na Rys. 1, Rys. 10) i wyznaczyć poprawkę.

Sposób wyznaczenia poprawki:

Maksimum natężenia światła padającego na detektor objawia się w postaci wartości maksymalnej napięcia mierzonego przez woltomierz dla określonej wartości położenia pokrętła monochromatora M_{max} . Aby znaleźć M_{max} należy uruchomić lampę sodową i otworzyć obie szczeliny monochromatora: wejściową i wyjściową (szerokość obu szczelin ustawić na 0,2mm). Uchwyt z próbką (PP) należy ustawić w takim położeniu, aby wiązka światła padała na detektor **D1**, a dźwignię pozycji przełącznika do pomiaru napięcia ustawić w położenie T. Włączyć woltomierz, a następnie za pomocą pokrętła monochromatora zmieniać długość fali światła w stronę większych i mniejszych wartości szukając maksimum sygnału, który pojawia się dla światła żółtego i odczytać wartość M_{max} . Poprawkę należy wyznaczyć ze wzoru $\Delta M = 1305,9 - M_{max}$.

UWAGA: w czasie wyznaczania poprawki monochromatora pokrywa układu musi być zamknięta.

λ(nm)	М	λ(nm)	М	λ (nm)	М	λ (nm)	М
360	1821,4	430	1549,8	600	1296,8	1500	1060,3
1	1815,6	2	1544,5	10	1288,7	50	1054,0
2	1809,9	4	1539,3	20	1281,1	1600	1047,7
3	1804.3	6	1534.2	30	1273.9	50	1041.5
4	1798,8	8	1529,1	40	1267,1	1700	1035,3
5	1793,4	440	1524,2	50	1260,5	50	1029,1
6	1788.1	2	1519.4	60	1254.2	1800	1022.9
7	1782,8	4	1514,7	70	1248,2	50	1016,7
8	1777,6	6	1510,0	80	1242,4	1900	1010,5
9	1772.5	8	1505.4	90	1236.9	50	1004.3
370	1/6/.5	450	1500.9	700	1231.6	2000	998.0
1	1/62,5	2	1496,4	10	1226,6	50	991,6
2	1/5/,6	4	1492,0	20	1221,9	2100	985.0
3	1/52./	6	1487.8	30	1217.3	50	978.3
4	1/4/,9	8	1483,6	40	1212,9	2200	9/1,4
5	1/43,2	460	1479,5	50	1208,7	50	964,3
6	1/38.5	2	14/5.4	60	1204.6	2300	957.1
/	1733,8	4	14/1,4	70	1200,6	50	949,8
8	1729,2	6	1467,4	80	1196,7	2400	942,5
9	1724,7	<u>8</u>	1463,5	90	1192,8	50	935,2
380	1715.0	4/0	1459.7	20	1189.2	2500	927.9
2	1711.4	<u> </u>		20	1182,0	2600	920,5
2	1707.1	4 	1452,3	40	1170,3	2600	913,1
3	1707,1	0		80	1164 5	2700	905,7
4	1608.6	<u> </u>	1445.1	80	1104.5	2700	898.2
5	1698,0 1604 F	480 2	1441,0	300	1159,0	2800	<u>890,7</u>
7	1694,5	<u> </u>	1430,1	20	11/0 2	2800	003,2
0	1696.2	6	1434,7	<u>40</u>	1145,5		
<u>0</u>	1682.3	<u> </u>	1/128 1	80	1145.0		
300	1678 /	/190	1420,1	1000	1136 7		
1	1674 5		1/21 7	20	1132.6		
2	1670.7	<u> </u>	1418.6	40	1128.6		
2	1666.9	6	1415 5	60	1120,0		
4	1663 1	8	1412.4	80	1129,8		
5	1659.4	500	1409 3	1100	1117 1		
6	1655.7	5	1401 7	20	1113.4		
7	1652.1	510	1394.5	40	1109.9		
8	1648.5	5	1387.5	60	1106.6		
9	1644.9	520	1380.8	80	1103.4		
400	1641.4	5	1374.2	1200	1100.3		
2	1634.6	530	1367.9	20	1097.3		
4	1627.8	5	1361.7	40	1094.3		
6	1621,1	540	1355,7	60	1091,4		
8	1614,5	5	1349,9	80	1088,6		
410	1608.0	550	1344.4	1300	1085.9		
2	1601.7	5	1339.0	20	1083.2		
4	1595,5	560	1333,8	40	1080,5		
6	1589,4	5	1328,7	60	1077,9		
8	1583.5	570	1323.8	80	1075.3		
420	1577,6	5	1318,9	1400	1072,8		
2	1571,9	580	1314,2	20	1070,3		
4	1566.3	5	1309.7	40	1067.8		
6	1560,7	590	1305,3	60	1065,3		
8	1555.2	5	1301.0	80	1062.8		

Tabela 2. Tablica cechowania monochromatora.

Określenie wskazań zerowych detektorów D1 i D2.

Pomiar wskazań zerowych polega na pomiarze napięć na poszczególnych detektorach, przy zamkniętej szczelinie wejściowej monochromatora. Wartości zerowe detektora **D1** należy w dalszych pomiarach odjąć od wartości natężeń wiązek padającej i przechodzącej I_0 i I_T , a wartości zerowe detektora **D2** od wartości wiązki odbitej I_R .

Zakres pomiarów

Pomiary wiązki padającej, przechodzącej i odbitej powinny być wykonane w przypadku przerwy prostej w GaAs w przedziale długości fali 803 ÷ 960 nm (1,54 – 1,29 eV). W przypadku przerwy skośnej w GaP przedział długości fal powinien zawierać się w zakresie 516 ÷ 695 nm (2,40 – 1,78 eV). Zakresy pomiarowe należy odczytać z Tabeli 2 po uwzględnieniu poprawki dla $M + \Delta M$. Punkty pomiarowe $M + \Delta M$ powinny być możliwie gęsto rozmieszczone (co jedną działkę na pokrętle monochromatora) w miejscu krawędzi absorpcji.

Pomiar natężenia wiązek światła

Dla ustalonego położenia pokrętła monochromatora dokonujemy pomiarów natężenia światła wiązki padającej I_0 , przechodzącej I_T i odbitej I_R . Następnie należy zmienić położenie pokrętła monochromatora i ponownie odczytać I_0 , I_T i I_R (zmiany tych wielkości w porównaniu z poprzednim odczytem nie powinny przekraczać 10%).

1. Pomiar natężenia światła wiązki padającej ${\it I}_0$.

Przed pomiarami należy zdemontować lampę sodową z ławy optycznej. W celu pomiaru natężenia światła wiązki padającej należy najpierw otworzyć obie szczeliny monochromatora SPM1. Następnie na szczelinę wejściową należy skierować wiązkę światła z oświetlacza (5 na Rys. 1, Rys. 9). Za pomocą dźwigni w obudowie układu detekcyjnego (PP) należy uchwyt z próbką ustawić w takim położeniu, aby wiązka światła padała bezpośrednio na detektor **D1** (dźwignia odciągnięta na zewnątrz). Przełącznik na obudowie układu detekcyjnego należy ustawić w pozycji T. Schemat biegu promieni i ustawień aparatury przedstawia Rys. 14. Następnie, za pomocą pokrętła monochromatora należy regulować długość fali, zapisując wskazanie woltomierza jako miarę I_0 .

2. Pomiar natężenia światła wiązki przechodzącej, ${\it I}_T$

Przy ustawieniach aparatury takich jak w puncie 1, za pomocą dźwigni w obudowie układu detekcyjnego uchwyt z próbką ustawić w takim położeniu, aby wiązka padała na próbkę (dźwignia PP wciśnięta do środka). Następnie, za pomocą pokrętła monochromatora należy regulować długość fali, zapisując dla każdego położenia wskazanie woltomierza, jako miarę I_T . W tym przypadku przełącznik na obudowie układu detekcyjnego należy ustawić w położeniu T. Schemat biegu promieni i ustawień aparatury w tym przypadku przedstawia Rys. 15.

Rys. 15 Schemat blokowy spektrometru do pomiaru natężenia światła I_T oraz I_R . D1- detektor wiązki przechodzącej, D2- detektor wiązki odbitej, P- próbka, PP- dźwignia zmiany położenia próbki, RT- przełącznik wyboru detektora (R- odbicie, T- transmisja).

3. Pomiar natężenia światła wiązki odbitej, I_R

Przy ustawieniach aparatury takich jak w puncie 2, pomiar natężenia światła wiązki odbitej I_R odbywa się z woltomierza dla przełącznika układu detekcyjnego ustawionego w pozycji R.

Wymiana próbki.

Próbka GaP jest przezroczysta o pomarańczowym zabarwieniu, natomiast próbka GaAs jest nieprzezroczysta dla światła widzialnego. Wymiana próbki wymaga otworzenia pokrywy spektrometru i przeprowadza się ją wyłącznie w obecności asystenta technicznego. Po wymianie próbki należy sprawdzić czy obszary padania wiązek światła I_0 , I_T oraz I_R mieszczą się całkowicie w aktywnych polach detektorów **D1** i **D2**.

Po zakończeniu pomiarów należy wyłączyć wszystkie elementy aparatury pomiarowej.

VI. Opracowanie wyników i raport końcowy

Wyniki pomiarów natężenia wiązek światła należy zapisać w tabeli sporządzonej zgodnie z poniższym przykładem (patrz Tabela 3).

Przed obliczaniem współczynników *T* i *R* sygnał zerowy detektora **D1** należy odjąć od I_0 (mV) oraz I_T (mV), natomiast detektora **D2** od I_R (mV). W kolumnie pierwszej znajduje się położenie pokrętła monochromatora (z uwzględnieniem poprawki). W kolumnie drugiej znajduje się długość fali λ (nm), natomiast w kolumnach trzeciej, czwartej i piątej - zmierzone wartości napięcia detektorów, które odpowiadają natężeniu światła padającego na płytkę $I_0(\lambda)$, przechodzącego przez płytkę $I_T(\lambda)$ oraz światła odbitego od płytki $I_R(\lambda)$.

$\frac{M + \Delta M}{(\text{działki})}$	λ (nm)	<i>I</i> ₀ (mV)	<i>I_T</i> (mV),	$I_R(\mathrm{mV})$	Т	R	E = hv (eV)	α^2 (cm ⁻²)
1180,0	828,3	3062	8,26	735,4	2,65·10 ⁻⁴	0,23837	1,497	65710
1179,0	831,4	3119	8,30	749,3	2,73·10 ⁻⁴	0,23847	1,491	65200
1158,0	904,0	4672	1130	1417	0,241	0,3022	1,372	586,1

Tabela 3. Przykładowe wyniki pomiarów dla próbki GaAs.

Współczynnik transmisji *T* definiuje się jako stosunek natężenia światła przechodzącego przez płytkę półprzewodnika $I_T(\lambda)$, do natężenia światła padającego na płytkę $I_0(\lambda)$:

$$T = T(\lambda) = \frac{I_T(\lambda)}{I_0(\lambda)}$$
(1)

Współczynnik odbicia R jest określony stosunkiem natężenia światła odbitego od płytki półprzewodnika $I_R(\lambda)$ do natężenia światła padającego na płytkę $I_0(\lambda)$:

$$R = R(\lambda) = \frac{I_R(\lambda)}{I_0(\lambda)}$$
(2)

Oba powyższe współczynniki są ze sobą powiązane i mogą być wyrażone poprzez parametry próbki (grubość) oraz współczynnik absorpcji promieniowania, α (wzór 22 Appendix). Wzór ten pozwala wyliczyć współczynnik absorpcji:

$$\alpha = -\frac{1}{d} \ln \left(\frac{-(1-R)^2 + \sqrt{(1-R)^4 + 4T^2R^2}}{2TR^2} \right)$$
(3)

W ostatniej kolumnie w Tabeli 3 należy umieścić obliczony z równania 3 współczynnik absorpcji, wstawiony w odpowiedniej potędze. Energię fotonów w kolumnie ósmej Tabeli 3 należy obliczyć ze wzoru:

$$E = h \frac{c}{\lambda} = \frac{1239,842}{\lambda(\text{nm})} \text{ eV}$$
(4)

Na podstawie danych z Tabeli 3 należy sporządzić dwa oddzielne wykresy. Na jednym należy umieścić $\frac{l}{I_0}$ współczynnika transmisji oraz współczynnika odbicia od energii fotonów. Na drugim rysunku należy nanieść wartości absorpcji w funkcji energii fotonów $\alpha^{\eta}(h\nu)$, gdzie η jest wykładnikiem potęgowym zależnym od typu przerwy energetycznej, patrz Tabela 4.

	Grubość płytki	Тур	Wykładnik	Typ zależności funkcyjnej
Półprzewodnik	. ,	przerwy	,	[Pankove (1974)]
	<i>d</i> (cm)	energetycznej	η	$\alpha^{\eta} \sim f(h\nu)$
GaP	0.030 cm	Skośna	1/2	$\alpha^{1/2} \sim C(h\nu - E_g \mp E_f)$
GaAs	0.030 cm	Prosta	2	$\alpha^2 \sim C(h\nu - E_g)$
InP	0.030 cm	Prosta	2	$\alpha^2 \sim C(h\nu - E_q)$

Tabela 4. Dane materiałowe do przeprowadzenia obliczeń i ich analizy.

Następnie, w obszarze krawędzi absorpcji należy dopasować funkcję liniową y = ax + b do punktów wykresu $\alpha^{\eta}(h\nu)$. Wartość przerwy energetycznej E_{g} wyznacza miejsce zerowe funkcji liniowej x = -b/a, czyli:

$$E_g = -\frac{b}{a} \tag{5}$$

Dla każdej krzywej wpisanej metodą najmniejszych kwadratów podać wartości współczynników prostej oraz ich niepewności (skorzystać z odpowiednich programów komputerowych). Niepewności te wpływają na niepewność wyznaczenia przerwy energetycznej badanego materiału.

Otrzymane wyniki powinny być omówione pod kątem ich poprawności i wiarygodności oraz porównane z dostępnymi danymi literaturowymi.

Literatura

- 1. C. Kittel, Wstęp do Fizyki ciała stałego, PWN Warszawa 2012.
- 2. H. Ibach, H. Lüth , Fizyka ciała stałego, PWN Warszawa 1996.
- 3. M. J. Pankove, Zjawiska optyczne w półprzewodnikach, Warszawa 1974.

Literatura uzupełniająca

- 4. R. Bacewicz, Optyka ciała stałego, wybrane zagadnienia, OWPW Warszawa 1995.
- 5. M. Subotowicz, *Metody doświadczalne w fizyce ciała stałego*, UMCS Lublin 1977.

Appendix: Materiały pomocnicze

Absorpcja optyczna w ciele stałym.

Absorpcja optyczna jest wynikiem wzbudzania elektronów z niższych do wyższych stanów energetycznych. Miarą absorpcji jest współczynnik absorpcji $\alpha(h\nu)$, który jest zdefiniowany jako względna szybkość zmniejszania się natężenia światła wzdłuż kierunku rozchodzenia się:

$$\alpha = -\frac{1}{I(h\nu)} \frac{d[I(h\nu)]}{dx}$$

Ponieważ pęd fotonu h/λ (λ - jest długością fali światła) jest bardzo mały w porównaniu z pędem fononu, w procesie absorpcji fotonu pęd elektronu powinien być stały. Współczynnik absorpcji $\alpha(h\nu)$ dla danej energii fotonu jest proporcjonalny do prawdopodobieństwa przejścia P_{pk} ze stanu podstawowego p do stanu końcowego k oraz do iloczynu gęstości dostępnych stanów końcowych n_k i początkowych n_p . Sumując po wszystkich możliwych przejściach pomiędzy stanami odległymi od siebie o energię $h\nu$, otrzymamy współczynnik absorpcji

$$\alpha(h\nu) = A \sum P_{pk} n_p n_k$$

W dalszej części, dla uproszczenia, należy założyć, że wszystkie stany w paśmie walencyjnym są zapełnione, a w paśmie przewodnictwa są puste. Warunek ten jest spełniony w *T*= 0 K w półprzewodniku samoistnym [Pankove (1974)].

Przejścia proste (dozwolone)

Rys. 1 Schematyczne zobrazowanie absorpcji optycznej w półprzewodniku z przerwą prostą.

Każdy stan początkowy elektronu w paśmie walencyjnym E_p jest związany ze stanem końcowym, w paśmie przewodnictwa, o energii E_k następującą zależnością:

$$E_k = h\nu - |E_p| \tag{3}$$

W pasmach parabolicznych:

$$E_k - E_g = \frac{\hbar^2 k^2}{2m_e^*}$$

$$= -\frac{\hbar^2 k^2}{2m_e^*}$$

oraz
$$E_p = rac{\hbar^2 k^2}{2m_d^*}$$

Stąd po przekształceniach dostaniemy następujące wyrażenie:

2

6

$$h\nu - E_g = \frac{\hbar^2 k^2}{2} \left(\frac{1}{m_e^*} + \frac{1}{m_d^*} \right)$$

gdzie m_e^* i m_d^* to masy efektywne odpowiednio elektronów i dziur. Uwzględniając gęstość stanów biorących udział w przejściu, otrzymujemy:

$$\alpha(h\nu) = A^*(h\nu - E_a)^{1/2}$$

Stały czynnik A^* dany jest wzorem (3-3) na stronie 52 [Pankove (1974)].

Przejścia optyczne w półprzewodnikach z przerwą skośną

Jeżeli w przejściu między stanami energetycznymi elektron zmienia także pęd, to przejście musi przebiegać dwustopniowo, gdyż foton nie może spowodować zmiany pędu elektronu. Zachowanie pędu zawdzięczamy oddziaływaniu z fononem, co ilustruje poniżej <u>Rys. 2</u>.

Rys. 2 Schematyczne zobrazowanie przejścia skośnego pod wpływem absorpcji kwantu światła: a) przejście z absorpcją fononu, b) przejście z emisją fononu.

W przejściach tych, spośród szerokiego dostępnego widma fononów, mogą brać udział jedynie fonony o odpowiednim pędzie. Są to zwykle podłużne lub poprzeczne fonony akustyczne. Każdy z nich ma charakterystyczną energię E_{ph} . Zatem w celu uzupełnienia przejścia z E_p do E_k fonon musi być wyemitowany lub zaabsorbowany. Te dwa procesy zapisujemy następująco:

$$\begin{cases} hv_e = E_k - E_p + E_{ph} \\ hv_a = E_k - E_p - E_{ph} \end{cases}$$
8

Przejścia skośne mogą następować ze wszystkich zajętych stanów z pasma walencyjnego do wszystkich pustych stanów w paśmie przewodnictwa. Współczynnik absorpcji jest proporcjonalny do iloczynu gęstości stanów początkowych i końcowych, całkowanego po wszystkich możliwych kombinacjach stanów odległych od siebie o $hv \pm E_{ph}$. Gęstość stanów początkowych o energii E_p :

$$N(E_p) = \frac{1}{2\pi^2 \hbar^3} (2m_d^*)^{3/2} |E_p|^{1/2}$$

Gęstość stanów końcowych o energii E_k :

$$N(E_k) = \frac{1}{2\pi^2 \hbar^3} (2m_e^*)^{3/2} (h\nu - E_g \mp E_{ph} + E_p)^{1/2}$$
10

Współczynnik α jest również proporcjonalny do prawdopodobieństwa oddziaływania elektronów z fononami, które jest funkcją liczby fononów N_{ph} , danej przez statystykę Bosego-Einsteina. Dla przejść z absorpcją fononu współczynnik absorpcji wynosi (dla $h\nu > E_g - E_{ph}$):

Instytut Fizyki UMCS

11

$$\alpha_a(h\nu) = \frac{A(h\nu - E_g + E_{ph})^2}{\exp\left(\frac{E_{ph}}{k_BT}\right) - 1}$$

Dla $h\nu > E_g + E_{ph}$, prawdopodobieństwo emisji fononu jest proporcjonalne do $N_{ph} + 1$, z tego względu dla przejść z emisją fononu otrzymujemy współczynnik absorpcji:

$$\alpha_e(h\nu) = \frac{A(h\nu - E_g - E_{ph})^2}{1 - \exp\left(-\frac{E_{ph}}{k_BT}\right)}$$
12

Ponieważ w rzeczywistości przy $h\nu > E_g + E_{ph}$ jest możliwa zarówno absorpcja jak i emisja fononu i współczynnik absorpcji wynosi:

$$\alpha(h\nu) = \alpha_a(h\nu) + \alpha_e(h\nu)$$
13

W bardzo niskich temperaturach, gdy gęstość fononów jest bardzo mała, współczynnik $\alpha_a(h\nu)$ jest mały. Wykres zależności temperaturowej $\alpha_a(h\nu)$ i $\alpha_e(h\nu)$ można zobaczyć na Rys. 3-3 [Pankove (1974)].

Oddziaływanie fali elektromagnetycznej z półprzewodnikiem.

Oddziaływanie fali elektromagnetycznej z półprzewodnikiem opisują równania Maxwella, w których własności półprzewodnika uwzględnione są przez zależności stałych materiałowych półprzewodników takich jak stała dielektryczna $\varepsilon(hv)$, współczynnik załamania n(hv), czy przewodnictwo $\sigma(hv)$. Wielkości te silnie zależą od energii fotonów hv w obszarze przejść międzypasmowych. Najczęściej przedstawia się je, jako liczby zespolone, między którymi zachodzą ważne zależności [Pankove (1974)]:

$$\tilde{n} = n - i\kappa$$

$$n^2 - \kappa^2 = \varepsilon, 2n\kappa = \varepsilon_i$$
14
15

$$n^2 = \varepsilon \mu$$

prędkość $v = c/\tilde{n}$. W zakresie częstości światła widzialnego przenikalność magnetyczna $\mu \approx 1$, stąd z dobrym przybliżeniem można przyjąć, że $n \approx \sqrt{\varepsilon}$. Współczynnik ekstynkcji κ związany jest z absorpcją promieniowania w ośrodku związkiem:

$$\alpha = \frac{4\pi\nu\kappa}{c}$$
 17

Jest to współczynnik opisujący osłabienie natężenia światła I(x) w funkcji grubości ośrodka, które określone jest prawem Bouguera-Lamberta [Subotowicz (1976)]:

$$\frac{I(x)}{I_0} = (1 - R)e^{-\alpha x}$$
 18

Między częścią rzeczywistą stałej dielektrycznej ε , a urojoną ε_i zachodzą ważne związki, które powiązane są relacjami Kramersa-Kroniga [Pankove (1974)]:

$$\varepsilon(\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \varepsilon_{i}(\omega') d\omega'}{\omega'^{2} - \omega^{2}}$$

$$\varepsilon_{i}(\omega) = 1 + \frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\varepsilon(\omega') d\omega'}{\omega'^{2} - \omega^{2}}$$
20

16

16

Instytut Fizyki UMCS

Współczynnik absorpcji zależy przede wszystkim od energii fotonów $E = h\nu$, jak również od parametrów fizycznych określających stan ośrodka, np. temperatury, ciśnienia, natężenia światła czy koncentracji nośników. Pomiędzy próżnią a powierzchnią płytki, z powodu nieciągłości współczynnika załamania *n*, część promieniowania o natężeniu I_R ulega odbiciu, tak że $I_R = R \cdot I_0$. Przy padaniu prostopadłym wiązki światła na granicę ośrodków, *R* wyraża się wzorem [Ibach (1996)]:

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$
21

Uwzględniając odbicie wiązki światła na obu granicach próbki (w kształcie płaskiej płytki o grubości *d*) oraz absorpcję w jej wnętrzu, współczynnik transmisji *T* można przedstawić w postaci:

$$T = \frac{(1-R)^2 e^{-\alpha d}}{1-R^2 e^{-2\alpha d}}$$
 22

gdzie $T = I_T/I_0$ określa się jako stosunek natężenia światła I_T , które przeszło przez próbkę do natężenia światła padającego I_0 . Zarówno współczynnik odbicia, R jak i transmisji T, można zmierzyć eksperymentalnie i na ich podstawie obliczyć współczynniki absorpcji.