Ćwiczenie: B5

Tytuł ćwiczenia: Laser He-Ne

I. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie studentów z budową i zasadą działania lasera gazowego He-Ne oraz ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Student ma za zadanie wyznaczyć wymiary szczeliny lub układu szczelin na podstawie zmierzonych rozkładów kątowych natężenia światła ugiętego korzystając z teorii dyfrakcji światła w przybliżeniu Fraunhofera.

II. Zakres ćwiczenia (zadania do wykonania)

- 1. Pomiar rozkładu natężenia światła rozproszonego po przejściu przez pojedynczą szczelinę o nieznanej szerokości.
- 2. Wyznaczenie szerokości szczeliny z rozkładu natężenia światła rozproszonego.
- 3. Pomiar rozkładu natężenia światła rozproszonego po przejściu przez podwójną szczelinę.
- 4. Wyznaczenie stosunku odległości do szerokości układu dwóch szczelin.
- 5. Porównanie wyników obliczonych parametrów szczelin z pomiarami wykonanymi za pomocą mikroskopu.

III. Zagadnienia do kolokwium

- 1. Równania Maxwella.
- 2. Promieniowanie spontaniczne i wymuszone.
- 3. Zasada działania lasera He-Ne.
- 4. Zasada Huygensa, dyfrakcja, interferencja.
- 5. Dyfrakcji światła na pojedynczej i podwójnej szczelnie w przybliżeniu Fraunhofera.

IV. Opis urządzeń i przyrządów używanych w eksperymencie

Układ pomiarowy składa się z kilku przyrządów , przedstawianych na schemacie blokowym, widocznym na Rys 1a a zdjęcie aparatury przedstawia Rys. 1b

Rys. 1a Schemat blokowy układu pomiarowego do pomiaru rozkładu kątowego światła rozproszonego za szczeliną.

Rys. 1b Zdjęcie aparatury w eksperymencie Laser He-Ne: 1 – laser He-Ne, 2 – samopis, 3 – wzmacniacz selektywny, 4 – ława optyczna, 5 – zasilacz fotodiody krzemowej

W skład zestawu wchodzą :

1. Laser helowo- neonowy (He-Ne) emitujący falę o długości 0,6328 μ m o mocy ok. 1mW

Rys. 2. Widok kompaktowego lasera He-Ne firmy PHYWE.

Jest to laser o krótkiej rurze wyładowczej pracujący w kilku modach podłużnych. Strzałka na rysunku wskazuje włącznik zasilania lasera, którego przekręcenie powoduje uruchomienie lub wyłączenie lasera.

2. Samopis X-Y z przystawką czasową.

Samopis XY umożliwia wykonanie zapisu przebiegów napięć w kanałach X i Y w postaci wykresu Y(X) lub Y(t), w przypadku włączenia przystawki czasowej.

Angnesy mocujace papier
 Detektor Uchwyt pisaka
 Potencjometry czułości
 Wzmacniacz X Wzmacniacz X

Elementy regulacyjne samopisu przedstawione są na rysunku poniżej.

Rys. 3. Widok elementow regulacyjnych samopisu XY, wiązka laserowa pada z lewej strony na detektor (widok na urządzenie z góry).

3. Wzmacniacz selektywny (nanowoltomierz) służy do wydzielenia i wzmocnienia składowej zmiennej sygnału z detektora światła o określonej częstotliwości.

Rys 4. Panel sterujący nanowoltomierza selektywnego typu 237

- **Czułość** przełącznik pozwala na zmianę się wartość wzmocnienia składowej zmiennej sygnału np. pochodzącego z detektora światła. Wartość początkowa ustawiona domyślnie wynosi 100 mV.
- Wejście- Gniazdo wejściowe typu BNC.
- **Częstość** trzy przełączniki do zmiany częstości środkowej pasma wzmacniacza selektywnego nanowoltomierza (190 Hz).
- Wyjście wyjście analogowe proporcjonalne do wielkości amplitudy składowej zmiennej sygnału z detektora (w przypadku dostrojenia nanowoltomierza do częstotliwości modulacji światła).
 Napięcie DC z tego wyjścia doprowadza się do wejścia Y samopisu.

4. Przerywacz światła (P na Rys. 1a i Rys. 5) o częstotliwości około 190 Hz.

Rys 5. Szczelina (S), przerywacz (P) i laser umieszczone na ławie optycznej

- 5. Detektor światła D (fotodioda krzemowa ze wzmacniaczem, na Rys. 1 i Rys. 3) zamontowany na przesuwie osi OX samopisu, zbudowany na bazie wzmacniacza operacyjnego LF375 oraz fotodiody pracujący w układzie kompensacji foto-prądu generowanego w złączu p-n fotodiody.
- 6. Ława optyczna sztywna belka do montażu i regulacji elementów optyki (Rys. 1a) oraz stolik z przesuwem mikrometrycznym do ustawienia szczeliny w wiązce lasera (Rys. 5, Rys. 6 stolik widoczny jest poniżej szczeliny S).
- 7. Zasilacz detektora +/- 15V DC oraz stabilizowany zasilacz typu KP16102 odporny na zwarcie w obwodzie obciążenia (instrukcja dostępna w Pracowni II), 5 na Rys. 1b.
- 8. Zestaw szczelin pojedynczych i podwójnych, Rys. 6.

Rys 6. Pojedyncza szczelina (S) zamocowana na stoliku mikrometrycznym. Szerokość szczeliny regulowana jest metalowym pokrętłem (T) ze skalą znajdującym się wokół szczeliny.

V. Wykonanie ćwiczenia

(sposób postępowania, schematy blokowe, uwagi dotyczące obsługi aparatury i BHP)

1. Podłączenie poszczególnych elementów układu pomiarowego.

Układ doświadczalny należy podłączyć zgodnie ze schematem przedstawionym na Rys. 1 (układ standardowo pozostaje połączony należy jednak sprawdzić zgodność połączeń ze schematem).

Uwaga: Nanowoltomierz i samopis przed włączeniem i wyłączeniem powinny być ustawione na maksymalnych zakresach pomiarowych: nanowoltomierz SENSITIVITY 100 mV, samopis XY w kanale Y 2V/cm, stała czasowa nanowoltomierza powinna być ustawiona w pozycji LOW.

a) Układ pomiarowy przedstawiono na Rys.1. pozwala na automatyczny zapis na papierze milimetrowym natężenia światła rozproszonego I(x) w funkcji położenia x detektora. Detektor umieszczono na mechanizmie przesuwu OX samopisu. Optymalna czułość wzmacniacza Y samopisu wynosi 50 mV/cm (nie należy jej zwiększać)

b)Włączyć zasilanie (~220 V) lasera (kluczyk obrócić w prawo), a także zasilanie przerywacza, nanowoltomierza, samopisu i zasilacza ±15V.

2. Wykonanie pomiarów.

a) Wybrać odpowiedni element do badań (pojedynczą szczelinę lub układ szczelin). W przypadku pojedynczej szczeliny, Rys. 6, jej szerokość ustawić na skali na wartość ok. 4 i uważać, aby podczas pomiarów i montowania szczeliny nie zmienić tej wartości.

b) W celu prawidłowego wykonania ćwiczenia umieścić szczelinę na szynie optycznej dokładnie w centrum wiązki lasera. Dokładną regulację położenia szczeliny dokonuje się śrubą mikrometryczną stolika, na którym zamontowana jest szczelina, Rys. 6.

c) Włączyć laser i zaobserwować obraz dyfrakcyjny na ściance samopisu. Następnie wyregulować położenie szczeliny (odległość od detektora i kąt skręcenia względem wiązki laserowej) tak, aby obraz dyfrakcyjny był dobrze widoczny i symetryczny. Zmierzyć i zanotować odległość szczeliny od detektora.
 Uwaga: praca z laserem wymaga używania okularów ochronnych (na wyposażeniu pracowni).

d) Rozpoczęcie pomiaru rozkładu natężenia wiązki dyfrakcyjnej polega na uruchomieniu przystawki czasowej przyciskiem start/stop po opuszczeniu pisaka na papier milimetrowy. Aby pomiar był dokładny szybkość przesuwu detektora powinna być mała (przełącznik X-t w pozycji 10sek./cm) tak, aby woltomierz selektywny i samopis mogły prawidłowo reagować na zmiany sygnału z detektora D.

W trakcie wykonywania pomiarów, przy rejestracji maksimów dyfrakcyjnych o różnych natężeniach konieczna może być zmiana wartości wzmocnienia składowej zmiennej sygnału (czułości). Pozwoli to na uzyskanie dokładniejszych wyników rozkładu promieniowania.

W tym celu należy dokonać pomiaru dwukrotnie:

(1) przy czułości 100mV (lub 30mV jeśli sygnał jest słaby) nanowoltomierza rejestrując wierzchołek dyfrakcyjny zerowego rzędu, a następnie

(2) przy zwiększonym wzmocnieniu nanowoltomierza selektywnego (zakres napięcia 10 razy mniejszy) rejestrując boczne maksima dyfrakcyjne, tak aby pominąć obszar strefy zerowej dyfrakcji

Uwaga: w trakcie drugiego pomiaru przy zwiększonym wzmocnieniu sygnału, kiedy detektor znajdzie się w blisko obszaru wierzchołka centralnego należy **odciąć wiązkę** docierającą do detektora (np. zasłonić go papierową przesłoną), aby nie doprowadzić do uszkodzenia samopisu .

Zaleca się także wykonanie zdjęcia cyfrowego obrazu dyfrakcyjnego, które można umieścić w raporcie. Zdjęcie to może być również wykorzystane do analizy otrzymanego obrazu np. w programie Matlab (wyznaczenie położeń minimów natężenia światła i szerokości szczeliny).

VI. Opracowanie wyników i raport końcowy

Na podstawie uzyskanych wykresów na papierze milimetrowym sporządza się tabele danych będące podstawą do wykonania obliczeń szerokości szczeliny. W tym celu:

- na otrzymanej ciągłej krzywej zaznaczymy kilkanaście (ok. 20) punktów, w tym minimalne i maksymalne wartości natężeń.

- dla wybranych punktów określić z wykresu wartości natężeń wiązki dyfrakcyjnej (w milimetrach) oraz odpowiadające im wartości kątów rozproszenia wiązki (wyrażone w rad lub deg).

- natężenie wiązki normalizujemy względem jej wartości maksymalnej, czyli dla zerowego kąta rozproszenia.

Przykładowe, odczytane wartości z pomiaru dyfrakcji dla pojedynczej szczeliny przedstawione są w Tabeli 1. Kąt rozproszenia obliczono jako $\theta = atng\left(\frac{x-x_s}{L}\right)$, gdzie (x-x_s) oznacza odległość punktu od osi symetrii wykresu, a L jest odległością szczeliny od detektora.

Tabela 1 Przykładowe wyniki pomiaru dyfrakcji światła na pojedynczej szczelinie. L=1285 mm

lp	Kąt	Natężenie	Ι(θ)/Ι _{max}
	heta (rad)	<i>l(θ)</i> (mm)	
1	0.0000	1950	1.0000
2	0.0020	1650	0.8462
3	0.0039	1050	0.5385
4	0.0058	90	0.0462
5	0.0078	0	0
6	0.0097	40	0.0205
7	0.0117	100	0.0513
8	0.0136	70	0.0359
9	0.0156	5	0.0026
10	0.0175	3	0.0015
11	0.0195	24	0.0123
12	0.0214	24	0.0123

13	0.0234	0	0
14	0.0253	2	0.0010
15	0.0272	10	0.0051
16	0.0292	12	0.0062
17	0.0311	4	0.0021
18	0.0331	1	0.0005
19	0.0350	3	0.0015
20	0.0370	5	0.0026
21	0.0389	3	0.0015
22	0.0408	0	0
23	0.0428	2	0.0010
24	0.0447	3	0.0015
25	0.0467	2	0.0010

Określenie szerokości szczeliny

- a) Obliczenie zgrubne szerokości szczeliny: na podstawie położeń minimów dyfrakcyjnych na otrzymanym wykresie oraz z obliczonego warunku na występowanie minimów dyfrakcyjnych dla pojedynczej szczeliny w funkcji kąta rozproszenia obliczyć szerokość szczeliny, D.
- b) Dokładniejsze wyznaczenie szerokości szczeliny polega na dopasowaniu metodą najmniejszych kwadratów (używając programu Gnuplot, Matlab lub in), w punkty zapisane w tabeli 1 (względne natężenie od kąta rozproszenia) unormowanej funkcji teoretycznej na natężenie wiązki ugiętej dla pojedynczej szczeliny:

$$I(\theta) = \frac{\sin^2(kD\sin(\theta)/2)}{(kD\sin(\theta)/2)^2}$$
(1)

Dopasowanie to odbywa się względem parametru D, a więc szerokości szczeliny. W powyższym wzorze $k=2\pi/\lambda$, gdzie λ jest długością padającej fali.

W wyniku obliczeń dla danych z tabeli 1 otrzymano następujące dopasowanie dla pojedynczej szczeliny (wynik powinien być zawsze podany z niepewnością dopasowania):

Dla układu podwójnej szczeliny należy skorzystać ze wzoru (6) podanego w materiałach uzupełniających. Przykładowe wyniki uzyskane dla tej metody przedstawione zostały na Rys. 7 i Rys. 8.

Rys. 7. Wynik dopasowania funkcji teoretycznej (wzór 1) dla dyfrakcji na pojedynczej szczelinie do danych z Tabeli 1.

Rys. 8. Przykładowy wynik dopasowania parametrów szczeliny podwójnej do punktów pomiarowych.

c) Należy dokonać bezpośredniego pomiaru szerokości szczeliny przy użyciu mikroskopu optycznego lub komparatorem Zeissa i porównać ją z wyznaczonymi powyżej wartościami. Należy dokonać co najmniej 3-krotnego pomiaru szerokości szczeliny w różnych jej miejscach i wyliczyć wartość średnią.

Niepewność szerokości szczeliny wyznaczoną ze wzoru na minima dyfrakcyjne obliczyć metodą różniczkową. W metodzie dopasowania krzywej teoretycznej do punktów doświadczalnych za niepewność przyjąć wartość niepewności najlepszego dopasowania metodą najmniejszych kwadratów podawaną przez program komputerowy. Pomiar bezpośredni szerokości szczeliny komparatorem Zeissa wykonywany jest z niezwykle dużą dokładnością, ale ponieważ szczelina nie jest idealnie gładka za niepewność przyjąć największe odchylenie od wartości średniej z kilku pomiarów szerokości szczeliny.

Literatura

- 1. J. Ginter, Fizyka fal, Promieniowanie i dyfrakcja, Stany związane, PWN Warszawa 1993.
- 2. S. Frank, Jr. Crawford, *Fale*, PWN, Warszawa 1973.
- 3. H. Szydłowski, *Pracownia Fizyczna*, PWN, Warszawa 1989.
- 4. T. Goworek, Wstęp do Fizyki Atomu, UMCS, Lublin 1987.
- 5. F. Kaczmarek, Wstęp do Fizyki Laserów, PWN, Warszawa 1986.

Appendix: Materiały pomocnicze

Opis zjawiska dyfrakcji sprowadza się w zasadzie do znalezienia rozwiązania równania falowego z odpowiednimi warunkami brzegowymi. Znalezienie ścisłych rozwiązań napotyka na poważne trudności nawet w przypadku prostych układów. Na podstawie obserwacji zjawisk dyfrakcji na przedmiotach lub otworach, których rozmiary liniowe są znacznie większe od długości fali można stwierdzić, że:

- a) nie ma istotnych różnic w zjawiskach dyfrakcyjnych w zależności z czego zrobiony jest obiekt rozpraszający (dyfrakcja przebiega tak samo na szczelinie metalowej jak i na szczelinie uzyskanej na kliszy fotograficznej).
- b) zjawisko przebiega niezależnie od natury fizycznej rozpraszanych fal (dyfrakcji ulegają fale akustyczne, elektromagnetyczne czy fale de'Broglie'a).
 Najprostszym stosowanym opisem tych zjawisk jest przybliżenie Huygensa:

Każdy punkt, do którego dotarła fala, staje się źródłem nowej fali kulistej.

W tym przybliżeniu zaniedbuje się efekty polaryzacji. Przedmiot rozpraszający dzielimy na małe elementy d**o**' i każdy z tych elementów traktujemy jako źródło nowej fali. W takim przybliżeniu opis sprowadza się do promieniowania ciągłego rozkładu źródeł harmonicznie zmiennych [1]

$$\Psi(\mathbf{r}) = A_0 \frac{1}{4\pi} \int \frac{s(r')e^{ik|r-r'|}}{|r-r'|} d\sigma', \qquad 1$$

gdzie wielkość s(**r**') jest funkcją źródeł, uwzględniającą amplitudy oraz fazy emitowanej fali z elementu do', **k** oznacza wektor falowy fotonu o module $|\mathbf{k}| = 2\pi/\lambda$, gdzie λ jest długością fali światła. W omawianym przybliżeniu zakładając, że padająca fala jest fala płaską ograniczamy się do następujących przybliżeń: w wykładniku potęgowym (wzór 1):

 $| \mathbf{r} - \mathbf{r}' | \approx \mathbf{r} - \mathbf{n} \cdot \mathbf{r}'$, gdzie **n** jest wersorem wektora **r** oraz w mianowniku

|**r - r**'| ≈ r

Taki opis nazywamy dyfrakcją **Fraunhofera.** Jeżeli obiekt jest płaski to wszystkie jego elementy wysyłają fale w tych samych fazach. Jeśli mamy do czynienia z pustymi otworami i nieprzepuszczającymi światła przesłonami to również czynnik amplitudy jest stały s(**r**') =1. Wówczas otrzymujemy wyrażenie:

$$\psi(\mathbf{r}) \approx \frac{A_0 e^{ikr}}{4\pi r} \int s(r') e^{-ikn \cdot r'} d\sigma'; \qquad 2$$

gdzie A_o oznacza amplitudę fali padającej.

Do opisu dyfrakcji światła na pojedynczej szczelinie przyjmujemy , że na płaski otwór pada wiązka z lasera i ma charakter fali płaskiej. Szczelina ma szerokość D i długość L. Wprowadzając układ współrzędnych jak na Rys.8. przyjmujemy , że s(r')=1, z każdego element $d\sigma'$ powierzchni szczeliny.

W tym układzie wektory r, n mają postać;

r= [x', γ', 0], **n**=[sinθ, 0, cosθ] oraz

Rys. 8. Układ współrzędnych do obliczeń dyfrakcji na pojedynczej szczelinie.

Wykonanie całkowania daje w rezultacie wyrażenie na funkcję falową (wzór 3), gdzie iloczyn DL oznacza powierzchnię szczeliny oraz k= $2\pi/\lambda$ długość wektora falowego fotonów

$$\psi(\theta) = A_0 LD \frac{\sin(kD\sin\theta/2)}{kD\sin\theta/2}$$
3

Natężenie promieniowania $I(\theta)$ jest proporcjonalne do iloczynu $\psi \psi^*$. Natężenie promieniowania za szczeliną będzie miało postać;

$$I(\theta) = A_0 LD \frac{\sin^2(kD\sin(\theta)/2)}{(kD\sin(\theta)/2)^2}$$

Zatem kolejne minima natężenia promieniowania będą pojawiać się dla kątów θ spełniających warunki:

$$\frac{kD}{2}\sin\theta = n\pi , \qquad 5$$

lub inaczej

 $D \sin \theta = n\lambda$. gdzie n jest liczbą naturalną.

W przypadku dyfrakcji na dwóch szczelinach umieszczonych symetrycznie względem układu współrzędnych wzór na natężenie fali będzie miał postać;

$$I(\theta)/I_{0max} \approx \left[\frac{\sin(\beta D/2)}{\beta D/2}\right]^2 \cos^2(\beta d/2)$$
6

Ze wzoru (6) wynika, że obwiednia funkcji związana z dyfrakcją na pojedynczej szczelinie o szerokości D zmodulowana będzie członem $cos^2(\mathcal{B}d/2)$, gdzie d jest odległością między szczelinami oraz $\mathcal{B} = ksin(\theta)$.

Dyfrakcja światła na układzie szczelin.

Do opisu dyfrakcji światła na układzie kilku szczelin wygodnie jest wprowadzić funkcję T(x'), która określa jaka ilość światła przechodzi w punkcie x' przez przesłonę. Niech szczeliny mają szerokość D wysokość L i odległość między nimi wynosi d. Transmisję dla N szczelin pokazano na rys.9. Funkcję s(r') dla układu N szczelin można zapisać jako:

$s(\mathbf{r'}) = A_0 T(\mathbf{x'})$

T(x') jest sumą po wszystkich *n* współczynników transmisji T(x), x = x' - (n-1)d, gdzie n = 1,..N, oraz zmienne *x*, *x'* należą do przedziałów 0 < x' < Nd, 0 < x < d.

Rys.9. Transmisja T(x') układu N szczelin.

Transmisja pierwszej szczeliny określona jest następująco:

$$T(x') = 1 \text{ dla} (d/2 - D/2) < x' < (d/2 + D/2),$$
(7)

T(x') = 0 poza tym obszarem.

Wyrażenie na amplitudę fali rozproszonej w ramach dyfrakcji Fraunhofera na N szczelinach podaje wzór

$$\psi(\mathbf{r}) \approx \frac{A_0 e^{ikr}}{4\pi r} \int s(r') e^{-ikn \cdot r'} d\sigma' \ .$$

Konieczne jest obliczenie występującej całki z uwzględnieniem postaci funkcji s(r'). Całka w tym wzorze po podstawieniu wyrażeń na T(x'), r', nr' przyjmie postać:

$$J = A_0 DL \int_{-L/2}^{L/2} dy' \int_{0}^{M} dx' A_0 T(x') e^{-ikx' \sin\theta} = A_0 LD \int_{0}^{M} dx' T(x') e^{-ikx' \sin\theta}$$
(8)

lub po rozbiciu całki na sumę całek po obszarach o szerokości d

$$J = A_0 DL \sum_{n=1}^{N} \int_{(n-1)d}^{nd} dx' T(x') e^{-i\beta x'}$$

gdzie b = $k \sin\theta$. Po zmianie zmiennych x = x' - (n - 1)d na całkę (8) otrzymamy:

$$J = A_0 DL \sum_{n=1}^{N} e^{-i\beta(n-1)d} \int_{0}^{d} dx T(x) e^{-i\beta x} , \qquad (9)$$

oraz T(x) = T(x'), dla 0 < x < d.

Całka we wzorze (9) dla pierwszej szczeliny o transmisji (7) wynosi:

$$\int_0^d T(x)e^{i\beta x}dx = De^{-i\beta d/2} \frac{\sin(\beta D/2)}{\beta D/2}$$
(10)

 $\beta = ksin(\theta)$. Zależność od kąta θ w wyrażeniu (10) zgadza się ze wzorem dla pojedynczej szczeliny (4), z dokładnością do czynnika fazowego.

W przypadku dwóch takich szczelin umieszczonych symetrycznie (względem zera osi OX') otrzymamy:

$$I = A_0 LD \left(e^{-i\beta d/2} + e^{i\beta d/2} \right) \frac{\sin(\beta D/2)}{\beta D/2} = A_0 LD \frac{2\sin(\beta D/2)}{\beta D/2} \cos\left(\frac{\beta d}{2}\right)$$
(11)

pojawia się zatem dodatkowa modulacja natężenia światła w funkcji kąta θ , która zależy od odległości między szczelinami d.

Można więc doświadczalnie wyznaczyć stosunek d/D dla układu szczelin z pomiarów kątowych natężenia światła za przesłoną. Natężenie znormalizowane $I(\theta)/I_{max}$ jest proporcjonalne do iloczynu y y * czyli

$$\frac{I(\theta)}{I_{max}} \sim \left(\frac{\sin\left(\frac{\beta D}{2}\right)}{\frac{\beta D}{2}}\right)^2 \cos^2\left(\frac{\beta d}{2}\right)$$

Do obliczeń $I(\theta)$ można przyjąć dla kątów mniejszych niż 12°, sin $\theta \gg \theta$ z błędem mniejszym niż 1%.